1. (15 points) Let $(\Gamma=(V, E), \mu)$ be a weighted graph. For any $A \subset V$, define the potential operator $G_{A}: C(V) \rightarrow \mathbb{R}$ by

$$
G_{A} f(x)=\sum_{y \in V} g_{A}(x, y) f(y) \mu_{y}
$$

Find $\Delta_{A} G_{A}$ when $A \subset V, A \neq V$ and Γ is recurrent. Show that

$$
\Delta G f=-f
$$

when Γ is transient and $f \in L^{1}(V)$.
2. (15 points) Let S_{n} be the simple symmetric walk on \mathbb{Z}^{d}. Let

$$
\tau_{R}=\inf \left\{n \geq 0:\left|S_{n}\right|=R\right\}
$$

Let $h: \mathbb{Z}^{d} \rightarrow[0, \infty)$ be given by

$$
h(x)=\mathbb{P}_{x}\left(\tau_{20}<\tau_{1}\right)
$$

Show that
(a) $h(x)=1$ whenever $|x| \geq 20$
(b) $h(x)=0$ whenever $|x| \leq 1$
(c) h is harmonic on the set $1<|x|<20$, i.e.

$$
h(x)=\frac{1}{2 d}\left(\sum_{i=1}^{d} h\left(x+e_{d}\right)+h\left(x-e_{d}\right)\right)
$$

whenever $1<|x|<20$, where $\left\{e_{i}: 1 \leq i \leq d\right\}$ are the standard basis for \mathbb{Z}^{d}.
3. (20 points) Assume the following version of:

Cramer's Theorem: Let $\left(X_{i}\right)$ be i.i.d. \mathbb{R}-valued random variables such that

$$
\begin{equation*}
0 \in \text { interior }\left\{t \in \mathbb{R}: \varphi(t)=\mathbb{E} e^{t X_{1}}<\infty\right\} \tag{1}
\end{equation*}
$$

Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then for all $a>\mathbb{E} X_{1}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \geq a n\right)=-I(a) \tag{2}
\end{equation*}
$$

where

$$
I(z)=\sup _{t \in \mathbb{R}}[z t-\log \varphi(t)] .
$$

Find I : when $X_{i} \sim$
(a) Exponential (α), for some $\alpha>0$
(b) $\operatorname{Normal}(\alpha, 1)$, for some $\alpha>0$
4. (15 points) We place M marbles in P pots. At each time unit we choose one of the marbles uniformly at random and place it in one of the urns also uniformly chosen at random. Denote by M_{n} to be the number of marbles in the first urn at time n. Find a_{n}, b_{n}, so that $a_{n} M_{n}+b_{n}$ is a martingale.
5. (15 points) Consider a martingale where Z_{n} can take on only the values 2^{-n-1} and $1-2^{-n-1}$, each with probability $\frac{1}{2}$.
(a) Given that Z_{n}, conditional on Z_{n-1}, is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_{1}$ find $E\left[Z_{n} \mid Z_{n-1}\right]$ for each n so that the martingale condition is satisfied.
(b) Show that $\mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq 1\right)=\frac{1}{2} \neq 0=\mathbb{P}\left(\bigcup_{n \geq 1}\left\{Z_{n} \geq 1\right\}\right)$
(c) Show that for all $\epsilon>0, \mathbb{P}\left(\sup _{n \geq 1} Z_{n} \geq a\right) \leq \frac{\mathbb{E}\left[Z_{1}\right]}{a-\epsilon}$.
6. (20 points) Let (Γ, μ) be a weighted graph that is connected and locally finite. Let X_{n} be a random walk on (Γ, μ) and $p_{n}(\cdot, \cdot)$ be the n-th step transition density for $n \geq 1$ with P being the one step transition operator.
(a) State the Nash inequality N_{α} for Γ
(b) Fix $x \in V$ and $n \geq 1$. Let $r_{n}^{x}(\cdot)=p_{n}(x, \cdot)+p_{n+1}(x, \cdot)$ and $\phi_{n}(x)=r_{2 n}^{x}(x)$. Assume Γ satisfies $\left(N_{\alpha}\right)$ for $\alpha \geq 1$
i. Show that

$$
\begin{equation*}
\phi_{n+1}(x)-\phi_{n}(x)=-\mathcal{E}\left(r_{n}^{x}, r_{n}^{x}\right) \leq-2^{-\frac{4}{\alpha}} C_{N} \phi_{n}(x)^{1+\frac{2}{\alpha}} \tag{3}
\end{equation*}
$$

ii. Conclude that there exists $c_{1}>0$ such that

$$
\phi_{n+1}(x)-\phi_{n}(x) \leq c_{1} \phi_{n}(x)^{1+\frac{2}{\alpha}}
$$

and that this implies that there exists $c_{2}>0$ such that

$$
\begin{equation*}
\phi_{n}(x) \leq c_{2}^{-\frac{\alpha}{2}} n^{-\frac{\alpha}{2}} \tag{4}
\end{equation*}
$$

(c) Show that if Γ satisfies $\left(N_{\alpha}\right)$ for $\alpha \geq 1$ then there exists $c_{3}>0$ such that

$$
p_{n}(x, x) \leq \frac{c_{3}}{\max (1, n)^{\frac{\alpha}{2}}}
$$

for all $x \in V$ and $n \geq 0$.

