1. (15 points) Let $(\Gamma = (V, E), \mu)$ be a weighted graph. For any $A \subset V$, define the potential operator $G_A : C(V) \to \mathbb{R}$ by

$$G_A f(x) = \sum_{y \in V} g_A(x, y) f(y) \mu_y.$$

Find $\Delta_A G_A$ when $A \subset V$, $A \neq V$ and Γ is recurrent. Show that

$$\Delta G f = -f$$

when Γ is transient and $f \in L^1(V)$.

2. (15 points) Let S_n be the simple symmetric walk on \mathbb{Z}^d . Let

$$\tau_R = \inf\{n \ge 0 : | S_n | = R\}.$$

Let $h: \mathbb{Z}^d \to [0,\infty)$ be given by

$$h(x) = \mathbb{P}_x(\tau_{20} < \tau_1).$$

Show that

- (a) h(x) = 1 whenever $|x| \ge 20$
- (b) h(x) = 0 whenever $|x| \le 1$
- (c) h is harmonic on the set 1 < |x| < 20, i.e.

$$h(x) = \frac{1}{2d} \left(\sum_{i=1}^{d} h(x+e_d) + h(x-e_d) \right),$$

whenever 1 < |x| < 20, where $\{e_i : 1 \le i \le d\}$ are the standard basis for \mathbb{Z}^d .

3. (20 points) Assume the following version of:

Cramer's Theorem: Let (X_i) be i.i.d. \mathbb{R} -valued random variables such that

$$0 \in \operatorname{interior} \{ t \in \mathbb{R} : \varphi(t) = \mathbb{E} e^{tX_1} < \infty \}$$

$$\tag{1}$$

Let $S_n = \sum_{i=1}^n X_i$. Then for all $a > \mathbb{E}X_1$

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge an) = -I(a), \tag{2}$$

where

$$I(z) = \sup_{t \in \mathbb{R}} [zt - \log \varphi(t)].$$

Find I: when $X_i \sim$

- (a) Exponential (α), for some $\alpha > 0$
- (b) Normal(α ,1), for some $\alpha > 0$
- 4. (15 points) We place M marbles in P pots. At each time unit we choose one of the marbles uniformly at random and place it in one of the urns also uniformly chosen at random. Denote by M_n to be the number of marbles in the first urn at time n. Find a_n, b_n , so that $a_nM_n + b_n$ is a martingale.
- 5. (15 points) Consider a martingale where Z_n can take on only the values 2^{-n-1} and $1-2^{-n-1}$, each with probability $\frac{1}{2}$.

(a) Given that Z_n , conditional on Z_{n-1} , is independent of $Z_{n-2}, Z_{n-3}, \ldots, Z_1$ find $E[Z_n | Z_{n-1}]$ for each n so that the martingale condition is satisfied.

(b) Show that
$$\mathbb{P}(\sup_{n\geq 1} Z_n \geq 1) = \frac{1}{2} \neq 0 = \mathbb{P}(\bigcup_{n\geq 1} \{Z_n \geq 1\})$$

(c) Show that for all $\epsilon > 0$, $\mathbb{P}(\sup_{n\geq 1} Z_n \geq a) \leq \frac{\mathbb{E}[Z_1]}{a-\epsilon}$.

- 6. (20 points) Let (Γ, μ) be a weighted graph that is connected and locally finite. Let X_n be a random walk on (Γ, μ) and $p_n(\cdot, \cdot)$ be the *n*-th step transition density for $n \ge 1$ with P being the one step transition operator.
 - (a) State the Nash inequality N_{α} for Γ
 - (b) Fix $x \in V$ and $n \ge 1$. Let $r_n^x(\cdot) = p_n(x, \cdot) + p_{n+1}(x, \cdot)$ and $\phi_n(x) = r_{2n}^x(x)$. Assume Γ satisfies (N_α) for $\alpha \ge 1$
 - i. Show that

$$\phi_{n+1}(x) - \phi_n(x) = -\mathcal{E}(r_n^x, r_n^x) \le -2^{-\frac{4}{\alpha}} C_N \phi_n(x)^{1+\frac{2}{\alpha}}$$
(3)

ii. Conclude that there exists $c_1 > 0$ such that

$$\phi_{n+1}(x) - \phi_n(x) \le c_1 \phi_n(x)^{1+\frac{2}{\alpha}}$$

and that this implies that there exists $c_2 > 0$ such that

$$\phi_n(x) \le c_2^{-\frac{\alpha}{2}} n^{-\frac{\alpha}{2}} \tag{4}$$

(c) Show that if Γ satisfies (N_{α}) for $\alpha \geq 1$ then there exists $c_3 > 0$ such that

$$p_n(x,x) \le \frac{c_3}{\max(1,n)^{\frac{\alpha}{2}}}$$

for all $x \in V$ and $n \ge 0$.